

Southern AgriTech and Innovation Day 2024

Who are we? Specific Automation

• SPS Automation is a Christchurch-based R&D company specialising in tailored airborne and ground-based automated robotic systems.

• Our core technology is bespoke sensor-based AI and the design/integration of the robots that use it.

The SPS Automation Team

John and William Rolleston – Directors

The SPS Automation Team

Scott Spooner – CEO/CTO Mark Bentley – Chief Engineer - Embedded Systems Chantelle Walker – Executive Business Administrator Sara Lexa – Office Manager Sheldon Coup – Advanced Mathematics Peter Gillett – Mechanical Engineer Ollie Lines-Smith – Mechanical Engineer Lachlan Brewster – Software Engineer Corrie Hoult – Pilot/Aerospace Engineer Ross Oliver – Electrical Engineer Robert Rolleston – Mechatronics Engineer Thomas Ratlidge – Industrial Designer Kristina Brunsgaard – Embedded Engineer Emily Carter – Mechatronics Engineer Nathan Van Slooten – Engineering Intern

New Zealand Made – For New Zealand Agriculture

All systems are NZ designed, manufactured, and serviced at our

South Island based engineering facilities

Westham Industries - ALPHA

Automated Loading, Packaging, & Handling Assistant

Modular seed bagging system

- Easily configurable for integration with different existing hopper systems
- Bag cycle time of 5 seconds
- Handles various bag types
- Attaches MPI labels to filled bags
- Standalone System

Westham Industries - ALPHA

Automated Loading, Packaging, & Handling Assistant

Other Projects

- Low-cost Animal Conveyor
- Airbourne Wash System
- Drone Swarm Technology
- Omnidirectional Platforms
- Many, many more...

Autonomous Drones In Agriculture

How can drones help NZ agriculture?

What farmers want:

- Stock & asset monitoring
- Crop monitoring
- Spraying/Planting
- Weed/Invasive plant control

What are their concerns?

- Piloting skill
- Technology fear
- Regulation
- Cost

A New Tool in the fight against Wildings

Working alongside helicopter and ground crew operations, our system is purpose built to control the following complex target areas:

- Sparsely infested areas
- Remote locations
- Buffer zone control
- Safe graveyard reinfestation

The SPS Automation UAV Spray System

A turn-key solution to **control sparsely infested conifers**

- Survey an infested area
- Identify wilding tree locations
- Spray the trees using swarm spray operation

Ease of use:

- Easy to deploy and simple to operate
- Automatic/remote operation
- Comprehensive training course

Target Areas Surveyed

- Identify infested land for wilding control
- Survey using autogenerated flight plans
- Generate photogrammetry data

Aircraft Remote Command Centre processes aircraft flight logs and captured images

ADCAM Centre

captured data into a Geo-tagged Orthophoto and Digital Elevation Model (DEM). Results are uploaded onto the Job Server and clients can view through detailed map tiles through user interface.

Identification of wilding trees using ML

- Each tree identified using a Deep Learning detection algorithm
- Output includes indexed GPS tree locations
- Optimised flight plans for multiple spray aircraft are generated
- Fully automatic

Automatic pine tree detection and geo-localisation

Deep-learning detection algorithm with Cloud processing

Optimised Flight Plans for Swarm

- Terrain shape driven
- Multiple aircraft operation without overlap

Automatic flight path planning with optimised route

Multiple computer optimised flight plans generated based on real-world flight characteristics of SPS Spray Drones.

Flight plan generation can be for single or swarm operations

Mapping Flight Plan Files Generated

Flight Number	Number of Trees	Flight time
Spray Flight #956.FP	48	49 mins
Spray_Flight #957.FP	54	51 mins
Spray_Flight #958.FP	52	53 mins
Spray Flight #959 FP	36	45mins

The SPS Automation Spray Machine

- Simple to use
- Purpose built system
- Designed for continuous operation (Hybrid)
- Checklist based operation
- Fully automatic
- Powerful low altitude collision avoidance
- Adjustable spray swath
- Spray system designed and tested with SCION
- SPS comprehensive training course

Navigation – A step beyond collision detection

- Precise navigation through complex terrain
- Onboard SLAM processing and guidance
- Backup localisation
- Alternate path planning
- Surrounding terrain point cloud
- Ultra low altitude collision avoidance

Swarm Spray Operation

Onsite Swarm

- Multiple aircraft operation
- Mesh-based network
- Fully automatic
- One crew member operates entire fleet
- Remote monitoring
- Realtime operations app

Spray Operation Remote monitoring at ADCAM Centre Spray App Teams carry out Swarm **Spray Operations**

Teleoperation

Reducing Human Factors for Agricultural UAV Operations

- Fully automated flight systems
- Remotely monitored/piloted
- Checklist based Stop/Go operations
- App based end-user operation
- Reduced regulatory procedures
- Highly controlled flight and maintenance procedures.
- Subscription based "System as a Service"

To Spray, Or Not to Spray?

- On-board real time tree inference
- Secondary pine verification
- Auto herbicide calculation
- Varying levels of autonomy
- Ability to add additional trees "on the fly"
- Each tree sprayed has a picture taken and environmental data captured.

SPS Click and Approach Tree confirmation and aircraft guidance system

Aircraft hover over GPS located trees. SPS Spray App allows the user to select a tree and confirm spray. Once a tree is selected the aircraft uses computer vision to track and guide itself into spray position. If there are additional trees then users can sequentially select trees to spray

Each location photographed

Each GPS Location the Aircraft visits has a photo and environmental data recorded

Photos are uploaded to the Results database

Photos are also used to improve SPS Tree Detection Algorithm

Spray Results

Comprehensive logging and reporting of all data

- Area coverage
- Number of trees sprayed
- Total chemical and fuel used,
- Total operation time
- Operation cost

Automated UAV Spot Spraying System

Release Spraying using UAV's

Release spraying of new forest blocks

This is where we use a residual herbicide prior to planting to prevent competitive weeds from choking the new trees for the first six months ensuring they have a good start.

Current methods

- Require people to spray manually
- Expensive and time consuming
- Limited to human-accessible terrain
- Scorched Earth....
- Limited staff resources

Using the SPS Automation UAV Spot Spraying System

- Survey an intended area
- Optimise tree locations
- Spot spray using swarm UAV spray operation
- Re-spray when weeds regrow

Forestry Pre-plant Pre-Plant spraying – UAV mapping and tree location optimisation

- Algorithm-driven optimised tree placement
- User-definable spacing
- GPS Indexed tree Placement

Forestry UAV Spray Trials

Spray Trials in collaboration with SCION, Pan Pac Forest Products Ltd and Forest Growers Research Ltd (FGR)

Forestry UAV Spray Trials

Spray Trials in collaboration with SCION, Pan Pac Forest Products Ltd and Forest Growers Research Ltd (FGR)

Heavy Lift Agricultural Hybrid Aircraft

In partnership with the Precision Silviculture Program led by FGR, SPS Automation is developing a new generation of heavy lift Spot Spraying UAVs based on feedback from trials.

Expected Performance

- 140kg MTOW
- 120min Flight time
- 50kg-60kg payload
- Continuous precision spot spraying
- 20kw hybrid generator

Target Applications:

- Forestry Release Spraying
- Spot Spraying
- Invasive plant control
- Broadacre Spraying

Vision – Tomorrow

An Ecosystem of Autonomous Robotic Technology

- 2024 2026 2028 2029
- Autonomous release & weed spraying
- Swarm UAV operation
- Full teleoperated/monitored aircraft systems
- Drone in a Box asset management
- SaaS operation and maintenance program
- Real-time tracking/support for ground crews
- Alternative to herbicide weed control
- Airworthiness certified systems
- Ultra heavy-lift UAVs (300kg 500kg Payload)

0276961269 | info@spsautomation.com

Questions....