

Retiring Farmland into Native – Using the Tīmata Method

Retiring Farmland into Ngahere - Our Land & Water - Toitū te Whenua, Toiora te Wai (ourlandandwater.nz)

Food, Farming & Freshwater Roadshow - Our Land & Water

Don't blame the farmer

Relandscaping the Aotearoa farm

BAU is not an option

Proven Benefits of Strategic Land Retirement

Kaikokopu 15/5/2021

Te Mania 15/5/2021

Marginal Steep land profitability

B&L Economic Survey - Apportionment to LUC

	TO	TAL HA	E	Balance	LUC 6-7						
Area Hectares		1,000		670		330					
% Apportionment		100%		67%		33%					
Drymatter Production per Ha		6,010		7,000		4,000					
Drymatter Requirement per SU		788		773		845					
SU/Ha		7.63		9.06		4.73					
Stock Units		7,629		6,067		1,562					
FINANCIAL PERFORMANCE											
Revenue per Stock Unit**	\$	116	\$	116	\$	116					
Expenditure											
Fixed Per Stock Unit**	\$	36	\$	36	\$	36					
Fixed Per Hectare**	\$	299	\$	299	\$	299					
REVENUE	\$	885,010	\$	703,803	\$	181,207					
FYDENSES											
Eixed Per Stock Unit**	\$	274 658	\$	218 422	\$	56 237					
Fixed Per Hectare**	\$ \$	299,000	\$ \$	200,330	\$ \$	98 670					
Total Expenses	\$	573,658	\$	418,752	\$	154,907					
		,	-	,		,					
DRYSTOCK GROSS MARGIN	\$	311,352	\$	285,052	\$	26,300					
PER HA	\$	311	\$	425	\$	80					
** B&LNZ 22/23 Economic Survey Class 3 - NI Hard Hill											

Opportunity for Farm System & Land Use Change to Move into the Blue Zone

6

Early High Density PB3 Planting for "Weed Control"

- Canopy closure 2-3 years faster than *Tīmata*
- Spray & walk away approach

BUT

- Too Expensive = \$30k+ per hectare compared to \$5k
- Weed control is <u>STILL</u> required
- Now stressed trees with dieback due to overstocking
- Poor bird life affecting natural regeneration
- Planting stagnation may last 20+ years

"Plant trees with space to grow to their genetic potential don't starve them!"

Tīmata Beginning - Manuka Research Partnership Ltd

- PGP Research Project with MPI to prove the business case for broadscale land retirement into Manuka Plantations for high UMF Mānuka honey production
- Partners included HBRC, Landcorp, Te Tumu Paeroa, Comvita NZ Ltd, Tweeddale Apiaries
- 1,155ha planted from 2009 to 2015 including 25 commercial sized trials (approx. 20ha or greater)
- Massey University Research Provider
- 8 Year Timeline 2011 to 2018
- Largest 130ha trial site located at Lake Tutira in HB

Key requirement to prove business case was reducing cost of establishment so why not apply the same principles for general land retirement into Native?

LAKE TUTIRA – LARGEST TRIAL SITE

TUTIRA SITE AFTER GABRIELLE

Comvita Manuka Plantation Retirement for High UMF Honey

- 7,500 Hectares planted to date
- 17 Properties located in Mid & Lower North Island
- Site selection important
- Plantations range from 70 to 1,300 ha
- These sites will eventually transition to mature ngahere

The Tīmata Method – Key Points

- 1. Tīmata in Māori translates to begin, start, kick-off or commence
- 2. The method is intended to initiate and replicate the natural reversion process which in time (50-100+ years) is known to evolve into fully restored Ngahere (native forest)

Good things take time - 10 times that of human lifetime

Natural 80 Year Old Reversion Okura Bush

800 Year Old Pureora Forest

Tīmata = Significantly Reduced Cost of Establishment

Cost of plants and planting is reduced by at least **60%** through:

- > Use of *forestry grade coloniser plants* mainly Mānuka and Kānuka
- > Reduced planting density (1,000 to 2,500 stems per ha)
- POTENTIAL COST SAVING TO NZ OF \$10 Billion (1 million ha x \$20k/ha x 50%)

The Tīmata Method – Increased Labour Efficiency

> Planters (usually forestry workers) can plant 800+ stems per day

Forestry-grade native planting August-September 2022 1.mp4 on Vimeo

The Tīmata Method – Planting Mix

- > Prodominently manuka and/or kanuka depending upon what is naturally occurring in the locality
- Dry site might be 50% kānuka, 20% mānuka and 30% bird loving coloniser species such as karamu, mahoe, makomako, whauwhaupaku, tarata, kohuhu, ti kouka, & harakeke
- > Cooler and/or wetter sites would change to around 50% mānuka and 20% kānuka
- > The Tīmata method is particularly suitable for broadscale retirement of steep pastoral land but also riparian and wetland margins using professional forestry preparation and planting methods

Variations to the Theme

The following variations and others are being practiced and evaluated in different parts of NZ with the approach customised according to the specific challenges and attributes of the site:

- 100% mānuka and/or kānuka should be considered on sites where there is a high risk of browsing damage to the more palatable bird loving species which could be introduced in small groves later
- Planting 100% mānuka and/or kānuka and allowing time for natural introduction of other native species worthwhile considering if the site is adjoining existing ngahere
- Many sites already have a residual seed source and will easily revert to manuka and/or kanuka if livestock are excluded. In this situation, only strategic planting of coloniser species may be required to assist this process
- Planting mānuka & kānuka amongst existing gorse
- Higher Grade (T28) plants at 2 or 3m spacings on more challenging sites
- Oversowing mānuka and kānuka seed

Comparative Native Planting Costs (2023 pricing)											
			Tīmata		Tīmata		ligh Density				
		Fores	try Grade 3m	Fore	stry Grade 2m	F	PB3 & T28**				
Plant Spacing:											
- Metres Between Plants			3.0		2.0		1.5				
- Metres Between Rows			3.0		2.0		1.5				
Plants per ha			1,111		2,500		4,444				
Blanking %			15%		10%		0%				
Blanking Plants			167		250		-				
Total Plants			1,278		2,750		4,444				
Planting Cost Metrics											
Preplant Spot Spray*	\$ Per plant	\$	0.50	\$	0.50	\$	0.50				
Plant	\$ Per plant	\$	1.40	\$	1.40	\$	4.00				
Planting	\$ Per plant	\$	1.30	\$	1.30	\$	2.50				
Total	\$ Per plant	\$	3.20	\$	3.20	\$	7.00				
Total Planting Cost per Hectare		\$	4,089	\$	8,800	\$	31,111				
Release	\$ Per plant	\$	0.50	\$	0.50	\$	0.50				
	Cost per ha	\$	639	\$	1,375	\$	2,222				
Succession Trees	Trees per ha		150		150		150				
** Including Planting Labour	\$ Per Tree**	\$	10.00	\$	10.00	\$	10.00				
	Cost per ha	\$	1,500	\$	1,500	\$	1,500				
Estimated:											
Weed Control	Cost per ha	\$	1,500	\$	1,000	\$	500				
Animal Pest Control	Cost per ha	\$	1,000	\$	1,000	\$	1,000				
Fencing	Cost per ha	\$	2,000	\$	2,000	\$	2,000				
Earthworks		\$	500	\$	500	\$	500				
TOTAL COST PER HECTARE		\$	11,228	\$	16,175	\$	38,833				
* Ground based (Helicopter desi	ccation another op	otion)									
** Waikato Standard Costing											

The Tīmata Process

https://ourlandandwater.nz/outputs/the-timata-method-a-low-cost-way-to-retire-farmland-into-native-forest/

Key Messages:

- 1. Get weeds and animal pests under control <u>before</u> you plant (use professional contractors)
- 2. Consider peripheral weed incursion risk >>>> joint strategy with neighbours or Catchment
- 3. Basic tracking will assist planting and future maintenance
- 4. Use forestry planting contractors on larger areas >>> scale up by using catchment groups to co-ordinate supply of plants & planting across farms in your area
- 5. Plant provenance important >>> eco-sourcing of seed is encouraged
- 6. Pre-plant spot spray 4 to 6 weeks before planting beware of using residual acting chemical
- 7. July to September planting window (consider frost risk, soil temperature, drought risk)
- 8. Chemical release spray in the spring <u>if required</u>
- 9. Some blanking may be required the following year
- 10. Maintain ongoing weed and animal pest control

Over 10,000ha already been planted across NZ using Tīmata

Get weeds under control **BEFORE** Planting!!

Importance of Catchment-Wide Weed & Pest control (including Exotic Forestry & Dispersal Corridors)

SPACE-INVADERS-REPORT-PDF-68MB.PDF (PCE.PARLIAMENT.NZ)

When To Plant Succession Trees

- It is possible that introduction of some succession trees (puriri, kohekohe, totara, rimu and kahikatea) may occur naturally through wind & bird dispersal depending on proximity to a seed source
- Other species such as kauri, beech and kowhai require a close seed source
- Wait 4-7 years until nursery crop is close to canopy closure
- Plant PB3+ grade trees in strategic groves at 100+ stems per hectare
- Delay of planting will encourage good tree form and provide shelter and friendly fungi for the taller trees to thrive
- Don't underestimate the Important Role of Mycorrhizae

Plant Supply Chain

- Propagation Nurseries are the main suppliers of Forestry Grade plants
- Large scale orders of 100,000+ plants generally required November the year before planting
- Best to work through an intermediary (or Regional Council/Catchment Group(s)) who can bulk up orders arrange contracts and logistics
- Wholesale nurseries can also supply but these may be at a higher grade and cost important role to grow-on colonisers, wetland plants and supply succession trees

Tīmata Method – Comparative Growth Stages – just planted, 1 year, 4 year & 6 year (3m spacing with canopy closure)

GOOD THINGS TAKE TIME

Pastoral Farmer 10-Step FWFP Process

THE PLANNING PROCESS

Map Water Overland Flowpaths & CSA

Map Steep Erosion Prone Slopes

DEVELOP YOUR PLAN

Pukekauri Farms Land Management Units

Works Program for Land Use Change

MICRO-WETLAND (CSA) RESTORATION

May 2022

WETLAND (CSA) RESTORATION

July 2017

October 2023

EROSION PRONE GULLY AREAS

July 2018

November 2022

3yr Ephemeral Stream Planting

Erosion Prone LUC6e Retirement

Pre-planting 2020

September 2023

IS IT REALISTIC TO MOVE YOUR FARM BUSINESS INTO THE **BLUE ZONE**?

For Pukekauri Farm (AND OTHERS) the Answer is YES:

- 23-year journey First LEP in 2000 since then 20%+ of farm retired into native, exotics & wetland > more retirement planned
- Total pastoral farm profit has increased despite < EGA
- Additional earnings from timber and carbon
- Reduced GHG emissions close to carbon neutrality
- Property aesthetic and commercial value enhanced
- Farming to the grass production curve no imported feed
- Reduced synthetic fertiliser (N) >> improved soil & stock health
- Native Flora & Fauna Restoration & Enhancement
- Stream health has improved from 2/10 to 9/10

Check out <u>Rick Burke and Jan Loney</u>, <u>Bay of Plenty</u> | <u>Ag Matters</u>

SCALING UP TO CATCHMENT SCALE >>> THE WAIKOKOPU 34,256 HA FARM

Vision > Objectives > Planning

Catchment Scale Landscape Plan – guides farm-scale land use change for project planning & budgeting

- >60% N, P, sediment and E.coli load reductions through farm system & land use change
- Retirement of approx. 3,000ha of erosion prone land
- Reinstatement of 900ha+ wetlands and estuarine areas
- Detainment bunds to manage overland water flow
- 70km of riparian retirement
- Integrated Animal & Weed Pest Control
- Native Bird corridors, Fish passageways etc.
- The estimated cost for this work is \$85m+ (\$3k+/ha)

FINAL OBSERVATIONS

• FWFP and land use change may appear to be challengingBUT

- The reality is more straight-forward and a lot of the decisions are simply common sense
- Full implementation is potentially a long-term 20+ year project start small and build momentum
- Regional Councils need to provide catchment scale Vision & Plans for Farmers to inform land use change to meet required environmental outcomes
- Work as a Catchment Team extract economies of scale synergies for planting and weed & pest control
- We should treat the challenges we face as an opportunity to redesign pastoral farming to an integrated land use which ticks the boxes for:
- Environmental sustainability
- Business viability
- Farmer and community well being

The results will be highly rewarding!!

